1. Polynomial Identity (PI) algebras

Let R be an algebra over a field, k.

- PI algebra: R satisfies a monic polynomial $f \in \mathbb{Z}[X]$, i.e. $f(r_1, \ldots, r_s)$
- minimal degree of *R*: the least degree of all poynomial identites for
- PI degree: If R is prime then PI-deg(R) = $\frac{1}{2}$ (minimal degree of R).

Examples

- 1. Quantum affine space $\mathcal{O}_{q^{\lambda}}(k^{N})$ when $q^{\ell} = 1$. (λ is matrix of commutation relations.) – When N = 2 we get the quantum affine plane $k_q[X, Y]$ where XY = qYX.
- 2. Uni-parameter quantum matrices $\mathcal{O}_q(M_{m,n}(k))$ when $q^{\ell} = 1$.
- 3. Multiparameter quantum matrices $\mathcal{O}_{\lambda,p}(M_{m,n}(k))$ when λ and $p_{i,i}$ are roots of unity.

Facts about PI degree when R is prime

- PI-degree doesn't change under localisation: PI-deg(RS^{-1}) = PI-deg(R).
- If k algebraically closed and R affine (as in all the examples above) then PI-degree gives an upper bound on the dimension of the irreducible representations of R.

Theorem 1 ([3]). If $\mathcal{O}_{q\lambda}(k^N)$ is a quantum affine space with $\lambda = (\lambda_{ij})_{i,j}$ and q a primitive ℓ^{th} root of unity. Then PI-deg($\mathcal{O}_{a^{\lambda}}(k^{N})) = \sqrt{h}$ where h is the cardinality of the image

$$\pi \circ \boldsymbol{\lambda} : \mathbb{Z}^N \longrightarrow \mathbb{Z}^N \longrightarrow (\mathbb{Z}/\ell\mathbb{Z})^N.$$

Theorem 2 ([4] & [6]). *Given a suitable iterated Ore extension* $R = k[X_1] \dots [X_N; \sigma_N, \delta_N]$ with automorphisms $\sigma_i(X_i) = q^{\lambda_{ij}} X_i X_i$ and q a primitive ℓ^{th} root of unity. Then R is a PI ring and $\operatorname{Frac}(R) \cong \operatorname{Frac}(\mathcal{O}_{q^{\lambda}}(k^{N}))$. Therefore $\operatorname{PI-deg}(R) = \operatorname{PI-deg}(\mathcal{O}_{q^{\lambda}}(k^{N}))$.

Objective: Compute PI-deg(R/P) for **suitable** iterated Ore extensions R and completely prime ideals $P \triangleleft R$.

Strategy: Extend methods in [4] and [2] to use localisations to get a quantum affine space R' such that Frac(R/P) = Frac(R')and then apply Theorem 1 to R'.

2. Calculating the cardinality of $Im(\pi \circ \lambda)$

Since λ is a skew-symmetric, integral matrix then it has a congruent skew-normal form:

$$U\lambda U^{T} = S = \begin{pmatrix} 0 & h_{1} & & \\ -h_{1} & 0 & & 0 \\ & & \ddots & \\ & & 0 & h_{s} \\ & & 0 & -h_{s} & 0 \end{pmatrix} \in M_{N}(\mathbb{Z})$$

The $h_i \in \mathbb{Z}^*$ are the invariant factors of λ with the property $h_i \mid h_i$ for all i < j. [7, Lemma 2.4] \Rightarrow The quantum tori associated to λ and S are isomorphic, hence

$$\mathsf{PI-deg}(\mathcal{O}_{q^{\lambda}}(k^{N})) = \mathsf{PI-deg}(\mathcal{O}_{q^{S}}(k^{N})).$$

 \therefore We can replace λ in Theorem 1 with S and see that $h = \operatorname{card}(\operatorname{Im}(\pi \circ S))$. The shape of S makes it clear that h depends on the dimension of $ker(\lambda)$ and the values of its invariant factors h_i. Cauchon diagrams can help here.

PI degree of Quantum Algebras at Roots of Unity

Alex Rogers

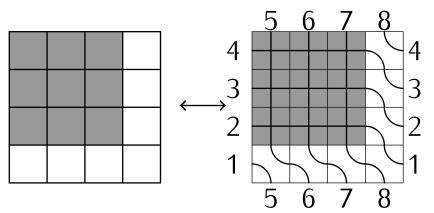
University of Kent ar486@kent.ac.uk

$$= 0 \quad \forall r_i \in R.$$

R.

3. Cauchon Diagrams

- Diagram, D: an $m \times n$ grid filled with black and white squares. • Cauchon diagram, C: For any black square, either all squares strictly above it or all
- squares strictly to the left of it are black. • Matrix associated to D, M(D): To each diagram D with N white squares we can form an $N \times N$ skew-symmetric, integral matrix, M(D).
- Pipe dreams: Label sides of diagram (as shown) and lay pipes over the squares place a "cross" over black squares and a "hyperbola" over white squares.
- Toric permutation of D, τ : Read off the toric permutation τ by defining $\tau(i)$ to be the label reached (on the left or top of D) by following the path starting at i (on the right or bottom of D):



Proposition 1 ([1]). Let D be a diagram with restricted permutation τ . Then the dimension of ker(M(D)) is the number of odd cycles (even length) in the disjoint cycle decomposition of τ .

Proposition 2. Let M(C) be the matrix associated to a Cauchon diagram C. Then all invariant factors of M(C) are powers of 2.

. Given a specific Cauchon diagram C we can compute the PI degree of its associated quantum affine space, $\mathcal{O}_{q^{M(C)}}(k^N)$ when $q^{\ell} = 1$ and ℓ is odd.

4. Quantum Determinantal Rings

Theorem 3. Let $R_t := \mathcal{O}_q(\mathcal{M}_n(k))/I_t$ where I_t is the two-sided ideal of $R := \mathcal{O}_q(\mathcal{M}_n(k))$ generated by all $(t + 1) \times (t + 1)$ quantum minors and $q \in k^*$ is a primitive ℓ^{th} root of unity with ℓ odd. Then PI-deg $(R_t) = \ell^{\frac{2nt-t^2-t}{2}}$.

• We have actually computed irreducible representations for R_t of correct dimension. Sketch proof of Theorem 3:

-[5, Lemma 4.4]: For a $t \times t$ quantum minor $\delta \in R$ and it's canonical image $\overline{\delta} \in R_t$,

$$R_t[\overline{\delta}^{-1}] \cong A_t[\overline{\delta^{-1}}]$$

 \therefore PI-deg(R_t) =PI-deg(A_t).

 $-A_t \subseteq R$ can be written as a **suitable** iterated Ore extension so, applying Theorem 2:

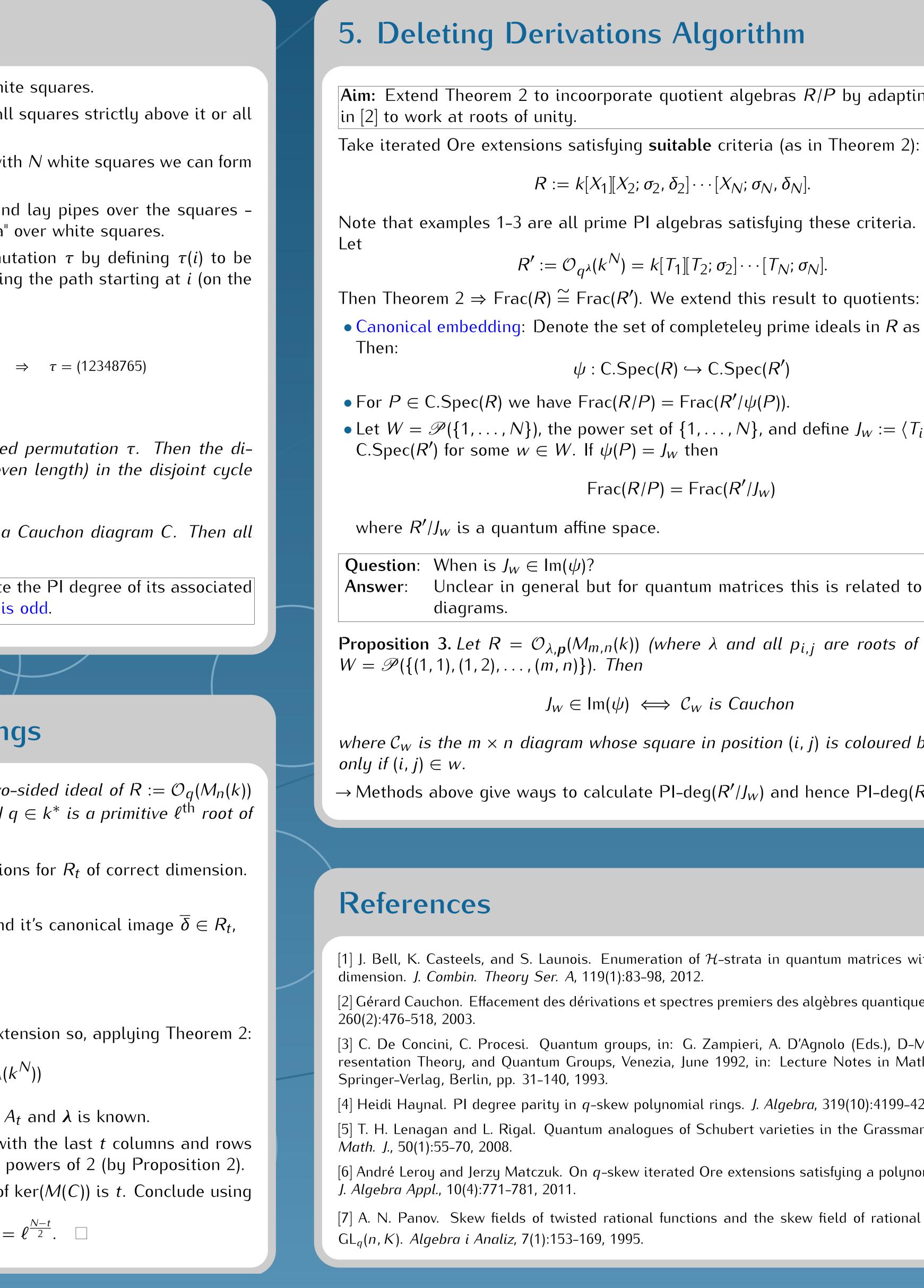
 $PI-deg(A_t) = PI-deg(\mathcal{O}_{a^{\lambda}}(k^N))$

where $N = 2nt - t^2$ is the number of generators in A_t and λ is known. $-\lambda = M(C)$ where C is the $n \times n$ Cauchon diagram with the last t columns and rows of squares left white so all invariant factors, h_i , are powers of 2 (by Proposition 2).

-Using Proposition 1 we proved that the dimension of ker(M(C)) is t. Conclude using Theorem 1:

$$\mathsf{PI-deg}(R_t) = \mathsf{PI-deg}(\mathcal{O}_{q^{\lambda}}(k^N)) =$$

Stéphane Launois



```
Aim: Extend Theorem 2 to incoorporate quotient algebras R/P by adapting methods
                                R := k[X_1][X_2; \sigma_2, \delta_2] \cdots [X_N; \sigma_N, \delta_N].
                             R' := \mathcal{O}_{q^{\lambda}}(k^{N}) = k[T_1][T_2; \sigma_2] \cdots [T_N; \sigma_N].
• Canonical embedding: Denote the set of completeley prime ideals in R as C.Spec(R).
                                      \psi : C.Spec(R) \hookrightarrow C.Spec(R')
• Let W = \mathscr{P}(\{1, \ldots, N\}), the power set of \{1, \ldots, N\}, and define J_W := \langle T_i \mid i \in W \rangle \in I
                                         Frac(R/P) = Frac(R'/J_w)
 Answer: Unclear in general but for quantum matrices this is related to Cauchon
Proposition 3. Let R = \mathcal{O}_{\lambda,p}(M_{m,n}(k)) (where \lambda and all p_{i,j} are roots of unity) and
                                  J_W \in \operatorname{Im}(\psi) \iff \mathcal{C}_W is Cauchon
```

where C_W is the $m \times n$ diagram whose square in position (i, j) is coloured black if and

 \rightarrow Methods above give ways to calculate PI-deg (R'/J_W) and hence PI-deg $(R/\psi^{-1}(J_W))$.

[1] J. Bell, K. Casteels, and S. Launois. Enumeration of \mathcal{H} -strata in quantum matrices with respect to [2] Gérard Cauchon. Effacement des dérivations et spectres premiers des algèbres quantiques. J. Algebra, [3] C. De Concini, C. Procesi. Quantum groups, in: G. Zampieri, A. D'Agnolo (Eds.), D-Modules Representation Theory, and Quantum Groups, Venezia, June 1992, in: Lecture Notes in Math., vol. 1565, [4] Heidi Haynal. PI degree parity in q-skew polynomial rings. J. Algebra, 319(10):4199-4221, 2008. [5] T. H. Lenagan and L. Rigal. Quantum analogues of Schubert varieties in the Grassmannian. *Glasg.* [6] André Leroy and Jerzy Matczuk. On *q*-skew iterated Ore extensions satisfying a polynomial identity. [7] A. N. Panov. Skew fields of twisted rational functions and the skew field of rational functions on